Hoogteberekening

De positie van een object tweedimensionaal bepalen op basis van latitude en longitude is vrij eenvoudig. We missen hierbij alleen een derde dimensie: altitude. Belangrijk om exact aan te kunnen geven waar iemand zich bevindt in bijv. een hoog gebouwd of vliegtuig. In deze blog meer over onze zoektocht naar hoogteberekening!

Om te beginnen; Als we over het over de latitude hebben, dan bedoelen we hiermee de breedtegraad, ofwel X. De longitude  betreft de lengtegraad, Y, en altitude geeft de hoogte aan, Z. Deze gegevens vormen de basis voor het driedimensionale coördinaatsysteem.

Hoogtebepaling vanaf zeeniveau tot het aardoppervlak:
Hoogtebepaling is in de luchtvaart uiteraard ook een belangrijk gegeven. Hierbij wordt de hoogte in feet (voeten) berekend vanaf zeeniveau. De hoogte van het aardoppervlak vanaf zeeniveau is gelukkig eenvoudig op te vragen via de API van Google Maps. Hiervoor kunnen we de zogenaamde ElevationService gebruiken:

elevator = new google.maps.ElevationService();

Deze service geeft van elke willekeurige latitude en longitude aan wat de altitude is van de betreffende locatie. De volledige functie staat gedocumenteerd op: https://developers.google.com/maps/documentation/javascript/elevation

Hoogtebepaling vanaf het aardoppervlak:
Maar hiermee zijn we er nog niet. Iemand kan zich ook in een wolkenkrabber begeven. Aan tweedimensionale locatiebepaling heb je in zulke gevallen niet veel. Gelukkig hebben we tegenwoordig hiervoor de digitale barometer!

De barometer (baro = druk in het Latijns) werd in 1643 uitgevonden door Evangelista Torricelli (portretfoto rechts). Het ging hierbij om de bekende kwikbarometer die hij had vervaardigd. Een buisje met kwik werd hierbij omgekeerd in een reservoir met kwik geplaatst. Naarmate de luchtdruk hoger werd, steeg ook de kwik in het buisje. Op deze manier kon naast luchtdruk ook temperatuur gemeten worden, die hiermee samenhing.

De gasmoleculen blijven dankzij de zwaartekracht dicht bij de aarde waardoor er langs de aardkorst een hogere luchtdruk ontstaat (ofwel dichtheid van de lucht). De luchtdruk neemt dus af wanneer de hoogte toeneemt. De lucht wordt bijv. ook ijler wanneer je in de bergen gaat wandelen, een bekend fenomeen. Deze atmosferische druk wordt aangegeven in millibar. De luchtdruk neemt op zeeniveau met ca. 1 millibar af voor iedere 8,2m stijging in hoogte. Op deze manier kunnen we dus ook hoogte berekenen vanaf het aardoppervlak!

Tegenwoordig hebben we gelukkig ook elektronische barometers. Door de luchtdruk verandert de weerstand en dus ook de spanning, waardoor de luchtdruk elektronisch gemeten kan worden. Voordeel hiervan is dat ook de temperatuur gecompenseerd kan worden voor een nauwkeuriger eindresultaat. Warme lucht heeft namelijk een lagere luchtdruk als koudere lucht. De luchtdruk is daarom ook een essentieel gegeven bij weersvoorspellingen.

Meetgegevens op de NB-IoT module van Sodaq:
Inmiddels hebben we de NB-IoT module volledig aan de praat. De gegevens die we nu uit kunnen lezen, naast geodata, betreffen:

  • luchtdruk, middels een digitale barometer, type LPS22HB
  • temperatuur en luchtvochtigheid (humidity), middels een digitale temperatuursensor HTS221
  • magnetisme en versnelling en daarmee richting, middels een magnetometer en een accelerometer, type LSM303AGR

De eerste twee sensoren zorgen voor de input voor een hoogtemeting. De magnetometer kan gebruikt worden om de richting te bepalen waarin een versnelling plaatsvindt. Daarover meer in de volgende blog!